Unified Deterministic/Statistical Deformable Models for Cardiac Image Analysis

نویسنده

  • Sharath Gopal
چکیده

OF THE DISSERTATION Unified Deterministic/Statistical Deformable Models for Cardiac Image Analysis by Sharath Kumar Gopal Doctor of Philosophy in Computer Science University of California, Los Angeles, 2016 Professor Demetri Terzopoulos, Chair This thesis proposes to fully automate the shape and motion reconstruction of non-rigid objects from visual information using a unified deterministic/statistical deformable model. The model enhances the global control of a statistical deformable model with local control, based on assumptions of the material properties of the non-rigid object being modeled. A Histogram of Oriented Gradients (HoG) based object detector for a 3D volume is proposed to compute initial model estimates that are crucial for automation. This thesis also develops a unified variational method for 4D (3D+time) non-rigid shape reconstruction with anatomical and temporal smoothness constraints. The proposed unified model and method are combined in a fully automated Computer Vision and Machine Learning based framework for the clinically important application of segmenting the myocardium in cardiac cine Magnetic Resonance images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Statistical/Deterministic Deformable Model for LV Segmentation in Cardiac MRI

We propose a novel deformable model with statistical and deterministic components for LV segmentation in cardiac magnetic resonance (MR) cine images. The statistical deformable component learns a global reference model of the LV using Principal Component Analysis (PCA) while the deterministic deformable component consists of a finite-element deformable surface superimposed on the reference mode...

متن کامل

Automated Model-Based Left Ventricle Segmentation in Cardiac MR Images

We present a fully automated system for segmenting the Left Ventricle (LV) in cardiac MR images based on statistical and deformable models. A Project-Out Inverse Compositional Active Appearance Model of 3D LV shape produces segmentations that are refined using a unified statistical/deterministic deformable model. A new multi-scale detector, based on the Histogram of Oriented Gradients (HoG), pr...

متن کامل

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Deformable models with sparsity constraints for cardiac motion analysis

Deformable models integrate bottom-up information derived from image appearance cues and top-down priori knowledge of the shape. They have been widely used with success in medical image analysis. One limitation of traditional deformable models is that the information extracted from the image data may contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue,...

متن کامل

Sparse Deformable Models with Application to Cardiac Motion Analysis

Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016